Network Neutrality or Bias - Handicapping the Odds for a Tiered and Branded Internet

Rob Frieden

Follow this and additional works at: https://repository.uchastings.edu/hastings_comm_ent_law_journal

Part of the Communications Law Commons, Entertainment, Arts, and Sports Law Commons, and the Intellectual Property Law Commons

Recommended Citation
Rob Frieden, Network Neutrality or Bias - Handicapping the Odds for a Tiered and Branded Internet, 29 Hastings Comm. & Ent. L.J. 171 (2007).
Available at: https://repository.uchastings.edu/hastings_comm_ent_law_journal/vol29/iss2/2

This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Communications and Entertainment Law Journal by an authorized editor of UC Hastings Scholarship Repository. For more information, please contact wangangela@uchastings.edu.
Network Neutrality or Bias?—Handicapping the Odds for a Tiered and Branded Internet

by

ROB FRIEDEN*

I. Traditional Interconnection and Cost Recovery Models .. 181
II. Telecommunications Settlements .. 182
III. ISP Peering and Transiting .. 184
IV. Current Marketplace Conditions Affecting Peering/Transit Decision-making 190
V. Traditional End User Payment Models ... 193
VI. Reshaping the Internet Using the Bellhead Model ... 194
VII. What Is Network Neutrality? ... 198
VIII. The FCC's Four Network Freedoms .. 200
IX. Whether and When Network Neutrality Principles and Possibly Regulations Are Necessary .. 203
X. Permissible Network Bias .. 204
XI. Variable Bandwidth and Throughput ... 204
XII. Bandwidth Partitioning ... 205
XIII. Metered Service .. 205
XIV. Better Than Best Efforts Routing .. 205
XV. Deliberate Packet Loss ... 206
XVI. Targeting Large Volume Content Generators for Punishment or Extortion 207
XVII. Port Blocking ... 209
XVIII. Unfair Trade Practices and Affiliate Favoritism ... 210
XIX. Premium Services or Fees to Override Firewalls and Filters 211
XX. Unilaterally Imposing Upstream and Downstream Rules That Violate Existing Service Level Agreements .. 212
XXI. Conclusions and Recommendations .. 213

* Pioneers Chair and Professor of Telecommunications and Law, The Pennsylvania State University. 102 Carnegie Building, University Park, P.A. 16802; email rmfs@psu.edu.
Converging technologies and markets pose major challenges to incumbent telecommunications companies and national regulatory authorities ("NRAs"). Packet switched networking can provide a

2. Telecommunications is defined as "the transmission, between or among points specified by the user, of information of the user's choosing, without change in the form or content of the information as sent and received." Telegraphs, telephones, and radiotelegraphs, 47 U.S.C. § 153(43). Telecommunications service means "the offering of telecommunications for a fee directly to the public, or to such classes of users as to be effectively available directly to the public, regardless of the facilities used." 47 U.S.C. § 153(46). The Communications Act defines telecommunications carrier as "any provider of telecommunications services, except that such term does not include aggregators of telecommunications services (as defined in section 226). A telecommunications carrier shall be treated as a common carrier under this Act only to the extent that it is engaged in providing telecommunications services, except that the Commission shall determine whether the provision of fixed and mobile satellite service shall be treated as common carriage." 47 U.S.C. § 153(44).

3. "The communications industry is in a time of unprecedented change. Technological advances, converging business models, and the digitalization of services create unparalleled opportunities and considerable challenges. Perhaps most important, digital convergence is creating real benefits for consumers worldwide by increasing competition among different platform providers. . . . Rapid convergence in technology has strained the existing legal and regulatory regime. Unprecedented market changes have demonstrated that what worked in the past may not be the right approach today. In the United States, we have made considerable changes to our approach, working to establish a less-regulated environment that can adapt more quickly to market changes. Oftentimes today, 'regulatory parity' does not mean applying the old economic regulations to new entrants. Rather, 'regulatory parity' means the elimination of legacy regulatory burdens on the incumbent. Regulation, Competition, Telecommunications and Content" The Portuguese Association for Communications Advancement Lisbon, Portugal, Remarks of FCC Chairman Kevin J. Martin, 2006 WL 3343877 (November 16, 2006).

"In this era of convergence, we often hear that new technologies will bring competition to markets currently dominated by incumbents. But what about when the same company or companies dominate both the new and the old markets? Will a parent company really allow a subsidiary to introduce products that cannibalize existing revenue streams?" Implementation of section 6002(B) of the Omnibus Budget Reconciliation Act of 1993, Annual Report and Analysis of Competitive Market Conditions With Respect to Commercial Mobile Services, WT Docket No. 06-17 (Terminated), Eleventh Report, Concurring Statement of Commissioner Michael J. Copps, FCC 06-142, 2006 WL 2795449 (September 29, 2006).

4. "Packet switching, in computer networking and telecommunications, is the now-dominant communications paradigm in which packets (units of information carriage) are routed between nodes over data links shared with other traffic. This contrasts with the other principal paradigm circuit switching, which sets up a dedicated connection between the two nodes for their exclusive use for the duration of the communication. Packet switching is used to optimize the use of the bandwidth available in a network, to minimize the transmission latency (i.e. the time it takes for data to pass across the network), and to
single, but versatile medium for the delivery of many information, communications and entertainment ("ICE") services. Most NRAs have only begun to revamp the nature and type of regulation in light of changed circumstances. Generally, NRAs have streamlined telecommunications service regulation in light of actual or prospective competition. These regulators have refrained from subjecting Internet-carried information services to significant government oversight.

Core telecommunications service revenue streams, such as that provided by basic wireline telephone services, have declined as increasing numbers of subscribers migrate to new options provided by wireless carriers, cable television companies and Voice over the Internet Protocol ("VoIP") ventures. Understandably incumbent...
carriers have undertaken a major campaign seeking regulatory relief that would remove real or perceived disincentives for new investment in replacement lines of business. This relief would also establish parity with unregulated ventures that offer competitive services.

In light of the financial stakes involved in the scope of regulation applied to conventional, so-called legacy services and new information services, numerous organizations have pursued a

VoIP, Power Point Presentation, available at http://www.fcc.gov/oet/tutorial/9-22-03_voip-final_slides_only.ppt. See also, R. Alex DuFour, Voice Over Internet Protocol: Ending Uncertainty and Promoting Innovation Through a Regulatory Framework, 13 COMLCON471 (2005); Stephen E. Blythe, The Regulation of Voice-Over-Internet-Protocol in the United States, the European Union, and the United Kingdom, 5 J. High Tech. L. 161(2005). In a short span of time, VoIP has evolved from a low quality hobby of computer enthusiasts, who used the Internet as a medium to provide voice communications between computers, to a near equivalent to conventional dial up telephone service. VoIP provides consumers with access to lower cost services because of technological efficiency in the use of the Internet's packet switched architecture and reduced regulation imposed costs. Some VoIP service providers can avoid paying access charges to local exchange carriers and making USF contributions. See Petition for Declaratory Ruling that pulver.com's Free World Dialup is Neither Telecommunications Nor a Telecommunications Service, Docket No. 03-45, Memorandum Opinion and Order, 19 FCC Rcd 3307 (2004).

11. The International Telecommunication Union reported that as of January 1, 2005 the United States ranked 16th in broadband penetration measured in terms of number of subscribers per 100 inhabitants. See International Telecommunications Union, ITU Strategy and Policy Unit Newsblog, available at http://www.itu.int/osg/spu/newslog/ITUs+New+Broadband+Statistics+For+1+January+2005.aspx. See Rob Frieden, Lessons From Broadband Development in Canada, Japan, Korea and the United States, 29 TELECOMM POL'Y., No. 8, 595-613 (Sept. 2005). Regulatory uncertainty and the overlay of existing telecommunications regulation may have created disincentives for incumbent carriers to invest in broadband plant. On the other hand, regardless of a real or perceived regulatory burden, incumbent carriers likely can no longer rely on wireline services as the primary source of revenue.

12. “The existing regulatory framework was built around the concept that different services were provided by different providers, without overlap. Thus, telephone companies providing telephone service are regulated as common carriers under Title II of the Communications Act of 1934 But, to the extent that [other] wireline networks can deliver the same services to the consumer at the same quality, it is difficult to understand why different technologies should trigger different regulatory treatment for the same services.” Antonia M. Apps & Thomas M. Dailey, Non-Regulation of Advanced Internet Services, 8 GEO. MASON L. REV. 681, 682-683 (Summer 2000); see also, Rob Frieden, The FCC's Name Game: How Shifting Regulatory Classifications Affect Competition, 19 BERKLEY TECH. L.J., No. 4, 1275-1314 (Fall, 2004); Rob Frieden, Regulatory Arbitrage Strategies and Tactics in Telecommunications, 5 N.C. J. L.& TECH., No. 2, 227-275 (2004), available at http://www.jolt.unc.edu/Vol5_12/pdf/Frieden%20v5i2.pdf. Rob Frieden, Adjusting the Horizontal and Vertical in Telecommunications Regulation: A Comparison of the Traditional and a New Layered Approach, 55 FED. COMM. L.J., No. 2, 207-250 (March 2003).

13. “Initial telecommunications regulatory reform has also been marked by regulatory arbitrage, whereby network carriers would seek to take advantage of inconsistent telecommunications regulations to sustain their businesses. Examples of early
public policy agenda supporting deregulation and the eradication of government oversight, including traditional regulatory over pricing, interconnection and quality of service. These groups reject any view that even as telecommunications becomes less regulated, a new concept of “network neutrality” should force largely unregulated regulatory arbitrage include international callback routines designed to take advantage of excessive international accounting rates, and bypass facilities of Competitive Access Providers - competing local exchange carriers, designed to avoid local exchange access charges. Recent examples of regulatory arbitrage include IP telephony services designed to avoid universal service charges, and reciprocal compensation terminating fees for terminating calls to Internet Service Providers, designed to take advantage of the alleged local nature of Internet traffic. Such regulatory arbitraging has been tacitly approved by regulatory authorities, to encourage certain social policy agendas and to avoid political obstacles that have favored existing monopoly network infrastructures.” Benjamin Lipschitz, Opportunities and Challenges in the Digital Era, 7-FALL MEDIA L. & POL’Y 14, 20 (Fall 1998).

Internet Service Providers ("ISPs") to forego the option of offering differentiated and tiered Internet services. Opponents of net neutrality view the concept as jeopardizing operational and pricing flexibility. Net neutrality advocates fervently argue that the Internet cannot achieve maximum contributions to national productivity, economic opportunity and innovation unless government ensures end-to-end connectivity by foreclosing a balkanized or tiered Internet.\(^\text{17}\)

\[^{18}\text{See, e.g., United States Senate, Committee on Commerce, Science and Transportation, Prepared Statement of Vinton G. Cerf, Vice President and Chief Internet Evangelist, Google, Inc., available at http://commerce.senate.gov/hearings/testimony.cfm?id=1705&wit_id=4958.}\]

In tandem with efforts to shape public policy and public opinion, incumbent carriers have recognized that declining revenue prospects for traditional, core service require changed business plans and strategies. Incumbent telephone companies now see upside financial opportunities in providing broadband Internet access, video services and VoIP singularly and as a bundle of services commonly referred to as the "triple or quadruple play." Incumbents’ responsiveness to consumers’ wants, needs and desires, and the willingness to embrace change comes across as a refreshing change to the “Bellhead” caricature of a corporate mindset lacking creativity, entrepreneurship and marketing acumen.

However, the Bellhead mindset may not have perished entirely as senior incumbent carrier managers have gone public with provocative statements about net neutrality that represent longstanding management philosophies, operating assumptions and business strategies fashioned when the incumbent carriers primarily provided voice telephony. As well, recent double digit billion dollar mergers of incumbent telecommunications firms evidence a keen interest in buying out competition in addition to investing in innovations and new facilities. Notwithstanding substantial...

20. Bellhead has been defined as a “person involved with telephone networks or someone who thinks about networking from a circuit-switched point of view.” PC Magazine Encyclopedia, http://www.pcmag.com/encyclopedia_term/0,2542,t=Bellhead&i=38536,00.asp.

For background on the Bellhead and Nethead orientation see Rob Frieden, Revenge of the Bellheads: How the Netheads Lost Control of the Internet, 26 TELECOM. POL’Y, No. 6, 125-144 (Sep./Oct. 2002).

technological and market convergence that will force new strategies, the senior managers of AT&T and Verizon have expressed rather rigid traditionalist views on their companies' role in content delivery, how these companies will price service, interconnect facilities and recover costs.

Even in an environment where data transmission and the Internet increasingly dominate, incumbent carrier managers still appear to shape business strategies based on the expectation that they can continue to make major operational and business decisions based on the status quo. When operating networks primarily transmitted, switched and routed voice telephone calls, an incumbent carrier could identify who caused the carrier to incur costs, where traffic originated and terminated and what volume of traffic a subscriber generated, and who had responsibility for payment. When an Internet-centric network dominates, carriers have far less ability to track cost causers, particularly because content and conduit converge, and a number of different business factors contribute to the generation of traffic including advertiser-added content whose reception by consumers pays for the creation and delivery of desired content.

Consumers look to Internet access as a seamless collection of telecommunications capability, i.e., high speed bit transport, and access to content. Additionally Internet traffic flows have both bursty and asymmetric characteristics unlike voice telephony. Consumers require broadband connections capable of handling substantial data volumes on an episodic, not continuous basis. The Internet's asymmetrical nature refers to the fact that much of the broadband connectivity that consumers require flows downstream from a content source to a consumer. A narrowband, upstream request for content can trigger a wideband download of the content bundled with an additional payload of commercial advertising. Heretofore, Internet traffic routing has not readily satisfied the Bellhead desire to designate particular carriers and routes to meter usage for each and every data session.

Faced with ever increasing bandwidth requirements, incumbent carriers have resurrected a decidedly Bellhead notion that they should implement technological innovations that can "sniff" and meter Internet traffic, and thereby identify cost causers with greater

22. "A packet sniffer (also known as a network analyzer or protocol analyzer, for particular types of networks, an Ethernet sniffer or wireless sniffer) is computer software or computer hardware that can intercept and log traffic passing over a digital network or part of a network. As data streams travel back and forth over the network, the sniffer captures each packet and eventually decodes and analyzes its content according to the
specificity. Innovations in packet prioritization may help incumbent carriers achieve this objective, but such technologies have not yet become commonly available. More fundamentally, competitive necessity and preexisting operational and pricing strategies militate against such metering. When they first introduced Internet services, the incumbent carriers recognized that a predominant “Nethead”23 culture coupled with technological limitations foreclosed the simple extension of voice telephony pricing, interconnection and cost recovery techniques.

Recently, senior managers of incumbent carriers have signaled their intent to meter and tier Internet services. AT&T Chairman Ed Whitacre has colorfully expressed indignation that current standard procedure for Internet pricing and interconnection has left his company burdened with having to create, maintain and frequently upgrade an expensive bit transport infrastructure while content firms, such as Google, allegedly get a free ride:

Now what they would like to do is use my pipes free, but I ain’t going to let them do that because we have spent this capital and we have to have a return on it. So there’s going to have to be some mechanism for these people who use these pipes to pay for the portion they’re using. Why should they be allowed to use my pipes? The Internet can’t be free in that sense, because we and the cable companies have made an investment and for a Google or Yahoo! or Vonage or anybody to expect to use these pipes [for] free is nuts!24

In a Bellhead-managed, voice telephony environment, a telephone company has the ability to meter a specific customer’s traffic and to bill for carrying that traffic on a metered or flat-rate. With rare exception, a telephone company only handles traffic for which it can expect to receive compensation from either the call originator, or the call recipient. The Bellhead model for managing traffic and recovering costs has a route-specific focus with comprehensive tracking, usage metering and cost accounting.

In a Nethead-managed Internet environment, carriers interconnect their networks seamlessly and build cooperative relationships designed to achieve global network connectivity. The

23 A Nethead has been defined as a “person who has a passion for the Internet, [or one] involved with data networks and packet switching.” PC MAGAZINE ENCYCLOPEDIA, available at http://www.pcmag.com/encyclopedia-term/0,2542,t=Nethead&i=47793,00.asp.

24 At SBC, It’s All About “Scale and Scope,” BUSINESSWEEK, ONLINE EXTRA November 7, 2005.
Internet operates as a “network of networks” and offers users access to content regardless of location. ISPs readily interconnect their networks with an eye toward acquiring access to other carriers’ networks for payment, or in exchange for providing reciprocal access on a zero payment basis. Accordingly, content generated by Google and sought by an AT&T broadband service customer arrives at the final destination via AT&T lines, but quite likely will have transited the facilities of other ISPs upstream from AT&T. With the revenues accruing from providing broadband access, AT&T either pays for upstream access to other ISPs’ networks, a transaction known as transiting, or AT&T negotiates a reciprocal “peering” relation with other ISPs whereby the parties voluntarily agree to exchange traffic, often without funds transferring between the carriers. Google is no more a free rider of AT&T networks than AT&T and its subscribers would be when content originates on an AT&T network, but must travel across the networks of other ISPs, with which AT&T has a transiting or peering agreement, to reach a recipient who subscribes to an ISP unaffiliated with AT&T.

The fact that incumbent carrier executives have gained traction with the view that content providers enjoy a free ride underscores the ability to obscure how Internet traffic traverses networks, and how ISPs manage and pay for such networking. As well it may foreshadow an aggressive campaign by carriers such as AT&T and Verizon to change the fundamental terms and conditions under which consumers access Internet content. Internet ventures have come up with many different business models to recoup and profit from investments including the offer of free, subsidized or deliberately under-priced

25. “The idea of a computer network intended to allow general communication between users of various computers has developed through a large number of stages. The melting pot of developments brought together the network of networks that we know as the Internet.” Wikipedia, History of the Internet, available at http://en.wikipedia.org/wiki/History_of_the_Internet.

26. Internet peering refers a reciprocal traffic routing arrangement whereby one ISP agrees to accept traffic for onward routing in exchange for a similar routing commitment by another ISP. Peering typically involves no settlement or payment of funds as ISPs agree to peer only if they generate and receive roughly the same volume of traffic. See also, Wikipedia, http://en.wikipedia.org/wiki/Peering.

27. Internet transiting refers to a traffic routing arrangement whereby one ISP agrees to accept traffic for onward routing for compensation. Transiting involves a settlement and payment of funds because one ISP requires access to the links, subscribers and content available via another ISP’s network and its peering arrangements. “Transit is the business relationship whereby one ISP provides (usually sells) access to all destinations in its routing table.” William B. Norton, Internet Service Providers and Peering, Draft 2.5 (undated), available at http://www.equinix.com/pdf/whitepapers/PeeringWP.2.pdf.
access to content. Internet ventures also may sweeten the deal by increasing the value propositions of a service, i.e., providing more options for free, or at a subsidized price. Keen on identifying and charging cost causers, incumbent telecommunications companies may want to alter and reduce the value proposition enjoyed by Internet consumers, particularly ones who consume the most, e.g., gamers, video file downloaders, and others who currently access the Internet on an “all you can eat” (“AYCE”) unmetered monthly subscription.

This article will examine Bellhead business models incorporating metering and other traditional cost recovery strategies with an eye toward determining what constitutes reasonable price discrimination and what represents an unfair trade practice or an anticompetitive strategy. The article will consider whether and how Bellhead management strategies will jeopardize the serendipity and positive networking externalities that have accrued when users can freely “surf the web” and content providers can bundle user sought content with advertising. Different pricing points based on throughput caps makes sense to Bellhead corporate officers who think they can capture rents that otherwise would accrue to content providers.

The article also will examine the clash of Bellhead and Nethead cultures with an eye toward identifying the stakes involved when Internet access pricing and interconnection primarily follows a telecommunications infrastructure cost recovery scheme in lieu of different commercial relationships favored by most Internet ventures. The article concludes that most Bellhead cost recovery models are lawful even though they will reduce for most consumers the real or perceived value proposition offered by an unmetered monthly Internet access subscription.

I. Traditional Interconnection and Cost Recovery Models

To appreciate the significance of recent initiatives to change Internet pricing, interconnection and quality of service conventions, one should consider the traditional models used by telecommunications carriers and ISPs in telephony and the Internet

28. A positive network externality exists when the cost incurred by a user of the Internet does not fully reflect the benefit derived with the addition of new users and points of communications. See John Farrell & Garth Saloner, Standardization, Compatibility and Innovation, 16 RAND J. OF ECON. 70 (1985); Michael L. Katz. & Carl Shapiro, Network Externalities, Competition and Compatibility, 75 AM. ECON. REV. 424 (1985). See also Mark A. Lemley & David McGowan, Legal Implications of Network Economic Effects, 86 CAL. L. REV. 479 (1998).
respectively. Bellhead and Nethead philosophies play a significant role in shaping interconnection terms and conditions.

II. Telecommunications Settlements

Telecommunications carriers have established interconnection and cost recovery models based on a network architecture designed to provide a voice telephone circuit via a neutral conduit for the content generated by others. In a nutshell, telecommunications carriers closely track network usage, establish direct contractual commitments with all carriers whose traffic traverses a network, and expect compensation for each unit of traffic handled. For international traffic, telecommunications carriers typically “match” international half-circuits and financially “settle” accounts using a fixed per minute accounting rate that attributes a negotiated financial value for each minute of traffic.

Ironically, the telephony model currently operates comparatively on a less hierarchical and more democratic basis than the Internet model. For example, each and every United States long distance carrier seeking to provide directly routed telephone calling to any foreign country generally can establish an operating agreement directly with one or more foreign carriers. Until a few years ago, Federal Communications Commission (“FCC”) policies required all U.S. carriers, regardless of traffic volume, capitalization and global presence, to comply with the same financial terms and conditions when settling accounts with foreign carriers. For domestic traffic

29. For background on the international accounting rate system, see Paul W. Kenefick, A Step in the Right Direction: The FCC Provides Regulatory Relief in International Settlements and International Services Licensing, 8 COMLCON43 (2000); Robert M. Frieden, Boston Artech, 2001; MANAGING INTERNET-DRIVEN CHANGE IN INTERNATIONAL TELECOMMUNICATIONS, ch. 9.1 (2001); Robert M. Frieden, Falling Through the Cracks: International Accounting Rate Reform at the ITU and WTO, 22 TELECOM POL’Y, 963, 963-75 (1998) (describing how heightened attention to international calling rates at the ITU and WTO has led some observers to conclude that carriers soon will impose cost-based termination charges). Rob Frieden, Last Days of the Free Ride? The Consequences of Settlement-Based Interconnection for the Internet, 1 INFO., No. 3, 225-238 (June, 1999).

carriers typically apply multi-element access charges for the use of facilities to originate and terminate traffic. Some of the charges are usage based and others are flat rated, where the cost does not vary with usage.

In the Bellhead world, each and every carrier secures permission to use another carrier's network for compensation on a highly calibrated and typically metered basis. A well-calibrated cost recovery mechanism applies anytime and anywhere one carrier hands off traffic to another carrier. Carrier "correspondents," of any size

31. Interstate access charges are imposed by local exchange carriers ("LECs") to recover the costs of providing access to their networks for interstate and long-distance service. The FCC seeks to promote the filing of access charges that recover costs from the class of consumers that have caused the LEC to incur such costs. In particular, non-traffic-sensitive costs—costs that do not vary with the amount of traffic carried over the facilities should be recovered through flat-rate charges, and traffic-sensitive costs should be recovered through per-minute charges. This approach fosters competition and efficient pricing. The Part 69 rules of the FCC Rules and Regulations, 47 C.F.R. Pt. 69 (2005), governing access charges, codifies this strategy. See Access Charge Reform, Price Cap Performance Review for Local Exchange Carriers, Transport Rate Structure and Pricing, and End User Common Line Charges, First Report and Order, 12 FCC Rcd. 15,982, paras. 344-48 (1997), aff'd, Southwestern Bell Tel. Co. v. FCC, 153 F.3d 523 (8th Cir. 1998); Access Charge Reform, Price Cap Performance Review for Local Exchange Carriers, Low-Volume Long-Distance Users, Federal-State Joint Board on Universal Service, Sixth Report and Order, 15 FCC Rcd. 12962 (2000); Developing a Unified Intercarrier Compensation Regime, Notice of Proposed Rulemaking, 16 FCC Rcd. 9610 (2001).

32. "Existing intercarrier compensation rules may categorize as follows: access charge rules, which govern the payments that interexchange carriers ("IXCs") and CMRS carriers make to LECs to originate and terminate long-distance calls. . . . The access charge rules can be further broken down into interstate access charge rules that are set by this Commission, and intrastate access charge rules that are set by state public utility commissions. Both the interstate and intrastate access charge rules establish charges that IXC must pay to LECs when the LEC originates or terminates a call for an IXC, or transports a call to, or from, the IXC's point of presence ("POP"). CMRS carriers also pay access charges to LECs for CMRS-to-LEC traffic that is not considered local and hence not covered by the reciprocal compensation rules. Other customers carrying traffic to or from points within an exchange area to points outside the exchange are may also pay access charges to the LEC. These access charges may have different rate structures i.e., they may be flat-rated or traffic-sensitive. In general, where a long-distance call passes through a LEC circuit switch, a per-minute charge is assessed. In order to keep local telephone rates low, access charges have traditionally exceeded the forward-looking
and traffic volume, secure direct interconnection of networks or indirect transiting via the network of a third carrier. In the traditional telecommunications model, carriers can readily track traffic routes and meter traffic streams.33 With such specificity, carriers can easily meter traffic and determine whether a carrier should receive payment for switching, routing, and transporting more traffic than the carrier handed off to another carrier.

III. ISP Peering and Transiting

In the Nethead world, ISPs typically use less calibrated measures of traffic flow and also have a far greater number of cost recovery options available for negotiation. ISPs traditionally have established looser interconnection arrangements that may not even meter traffic flows, and which emphasize the accessibility of bandwidth, number of interconnection locations, diversity of available routes, and availability of personnel. They can secure access to the entire, global Internet cloud34 often by establishing a direct contractual arrangement with a few ISPs who, in turn, have acquired other interconnection arrangements with many other smaller ISPs.35

Initially, ISPs used a similarly democratic model during the early days of the Internet. At that time, just about all ISPs agreed to peer with any other ISP on a settlement free, "Sender Keep All"36

\begin{itemize}
 \item The Internet cloud refers to the vast array of interconnected networks that make up the Internet and provide users with seamless connectivity to these networks and the content available via these networks.
 \item No single ISP can install and operate a ubiquitous global network capable of reaching any and all sources of content and Internet access subscribers. Even the larger ISPs that operate very high capacity, backbone must peer with other similarly large ISPs. The smaller ISPs typically operate in a locality or region, but must provide the same global Internet access. To achieve such access the smallest ISP pay larger ISPs for access to the larger ISPs’ customers, networks, and content available via the ISPs’ networks as well as the customers, networks, and content available via other ISP networks for which the ISPs’ have peering or transit arrangements. See also Wikipedia, Tier-1 network, available at http://en.wikipedia.org/wiki/Tier_1_ISP.
 \item “In a bill-and-keep or sender-keeps-all arrangement, each carrier bills its own customers for the origination of traffic and does not pay the other carrier for terminating this traffic. In a settlement arrangement, on the other hand, the carrier on which the traffic originates pays the other carrier to terminate the traffic. If traffic flow between the two networks is balanced, the net settlement that each pays is zero, and therefore a bill-and-
peering\(^3\) arrangement with no transfer of funds, or a transit arrangement where one ISP pays to acquire access to another ISP's network and its customers, as well as access to other ISPs' networks. As government incubators and anchor tenants sought to privatize the Internet, interconnection became less democratic and more hierarchical.\(^3\) Currently only the largest, Tier-1 ISPs agree to peering, with smaller ISPs, having fewer customers, available routes, bandwidth and interconnection points, having to pay to interconnect and use the networks of the Tier-1 ISPs.

Even as smaller ISPs now have to pay for network access, the Nethead credo of promoting global connectivity continues. Theoretically a small ISP in the most remote location can provide its customers access to just about any other ISP and any source or recipient of content simply by securing a transit agreement with one ISP higher up in the hierarchy. This ISP, located upstream from the smaller ISP, typically can “advertise” routes, i.e., offer transit access to other ISPs' networks, sufficient to secure global access to the smaller ISP's subscribers.\(^3\) The brilliance in the Internet ISP keep arrangement may be preferred because the networks do not have to incur costs to measure and track traffic or to develop billing systems. As an example, the Telecommunications Act of 1996 allows for incumbent local exchange carriers to exchange traffic with competitors using a bill-and-keep arrangement.” Michael Kende, *The Digital Handshake: Connecting Internet Backbones*, 11 COM.L CON45, n.60 (2003) (citing 47 U.S.C. §252 (d)(2)(B)(i) (2000)). “The sharing of traffic over the interconnected networks forming the Internet on a statistical and un-metered ‘settlements’ (or ‘bill & keep’) basis was a hallmark of early federal agency involvement in the development of the Internet. This system of traffic carriage free of charge became known as ‘peering.’” Barbara Esbin, *Internet Over Cable: Defining the Future in Terms of the Past* 20 (F.C.C., O.P.P. Working Paper No. 30, 1998), available at 1998 WL 567433.

39. Internet route advertisement refers to the network available to another ISP that has secured peering or transit access. In other words Internet traffic management
relationship lies in the positive networking externalities achieved through global connectivity.

The specificity in routing and destinations in telecommunication access arrangements largely eliminates any opportunity for free rides or underpayment by a carrier. In Internet access arrangements, even with the elimination of peering opportunities, some operators can exploit transit and other routing agreements at least in the short run. If an ISP does not bear much risk in providing qualitatively inferior service it can exploit access to other ISPs’ networks sooner and more extensively. The concept of “hot potato routing” refers to an ISP’s decision to hand off traffic to another ISP closer to the service territory of the handing-off ISP. Presumably, the quick hand off to another operator reduces the handing off ISP’s costs and makes fuller use of transit opportunities.

Despite significant efforts to streamline regulation, telecommunications carriers’ cost recovery strategies and tactics still face significant government oversight. In contrast, ISPs typically negotiate contracts subject to non-disclosure agreements, making it quite difficult to determine the actual terms and conditions the parties will use. Telecommunications settlements offer a generally

protocols provide a means for one ISP to know the available routing options available via another ISP. See CISCO Documentation, Glossary, Advertising: “The router process in which routing or service updates are sent at specified intervals so that other routers on the network can maintain lists of usable routes.” Cisco Documentation Glossary, available at http://www.cisco.com/univred/cc/td/doc/cisintwk/ita/a12.htm.

40. “Rather than lease lines throughout the nation and expand capacity, the free rider ISP may attempt to hand off traffic to a larger, better equipped ISP at the closest public peering point. The free rider ISP considers traffic a ‘hot potato’ and has a financial incentive to pass such traffic off to any other ISP who agrees to take it.” Robert Frieden, Without Public Peer: the Potential Regulatory and Universal Service Consequences of Internet Balkanization, 3 VA. J.L. & TECH. 8, P 2 n.2 (1998); see also Michael Kende, The Digital Handshake: Connecting Internet Backbones, 11 COMLCON45, 60 (2003).

42. In the United States and most nations ISPs avoid traditional telecommunications service regulations. See Inquiry Concerning High-Speed Access to the Internet Over Cable and Other Facilities, 17 FCC Rcd. 4798, 4823 (2002) (deeming cable modem broadband Internet access an information service), affirmed in part and vacated in part sub nom., Brand X Internet Services v. F.C.C., 345 F.3d 1120 (9th Cir. 2004), reversed and remanded sub nom., Nat’l Cable & Telecommunications Ass’n v. Brand X Internet Services, 125 S.Ct. 2688 (2005), on remand, 435 F.3d 1053 (9th Cir. Jan 23, 2006); Appropriate Framework for Broadband Access to the Internet over Wireline Facilities, 20 FCC Rcd. 14853, 14856 (2005) (reclassifying Digital Subscribers Link Internet access from a telecommunications service to an information service). Because the FCC has only a limited legal basis to regulate Information Services Providers under Title I of the Communications Act of 1934, as amended, 47 U.S.C. § 151 et seq, the Commission cannot
transparent process among equals with money flowing from one
carrier to the other based almost exclusively on traffic flows. Few
ISPs now peer on a zero cost basis and the flow of funds depends on a
number of factors in addition to traffic flows, including location of the
ISP.

While ISPs do not ignore the cost of doing business, they pursue
a cooperative routing arrangement often based on a less-than-
scientific “rough justice” estimate of whether a carrier offers
switching, routing and bit transport services equivalent to what it
receives. ISPs in remote areas, including most developing countries,
bear the entire financial burden to access larger ISP networks, often
via expensive international satellite links. In a worst case scenario,
require ISPs to file public tariffs specifying the term and conditions of service. Likewise
the FCC cannot require ISPs to disclose the terms and conditions under which they
interconnect lines through peering and transiting.

43. “Tier 1 networks typically seek to protect their relatively rare status by
preventing new networks from becoming Tier 1’s and thus potentially competing. The
networks often accomplish this by setting “peering requirements” which are intended to
be too high for new networks to meet. Some experts in the field of Internet
interconnections have compared the collective behaviors and motivations of Tier 1
networks to those of a cartel, in that they attempt to restrict the admission of new
members. When one Tier 1 is perceived to be “cheating” the cartel by selling transit for
too low a price, or by “dumping” too much outbound heavy bandwidth (which is
significantly easier to deliver for the sending network than the receiving network), other
members may move to de-peer that network.” Wikipedia, Tier 1 network, Politics,

44. “In the past it has been claimed that the most common charging arrangements for
international Internet connection disadvantage smaller networks and developing countries
generally, and disadvantage Australian industry specifically. Previous lobbying by industry
has led to action internationally by the Department of Communications, Information
Technology and the Arts (DCITA).

In particular peering and transit practices were singled out for complaint:

The largest international ISPs (“Tier 1s”) operate peering arrangements for
exchanging Internet traffic among themselves without charge.

Under transit arrangements, non-Tier 1 and remoted networks are required to
cover all costs of international data transport, in both directions, to points of
interconnection with Tier 1 networks. Smaller networks also pay interconnection
charges ('port charges'). Under the transit model, charging relates only to the
relative size of the networks and takes no account of the exchange of value
between networks. This arrangement is said to advantage the Tier-1 market
operators, while disadvantaging smaller networks and developing countries,
issues/international_communations_costs.

45. See Global Internet Policy Initiative, Internet Exchange Points: Their Importance
to Development of the Internet and Strategies for their Deployment − The African
Example (June 6, 2002, revised May 3, 2004), available at
an ISP in a developing country lacks access to a local or regional facility for the exchange of traffic thereby requiring transit via distant ISP facilities even for the delivery of local traffic. Having to self-provide telecommunications line access to other ISPs, and the possibility of “tromboning,” via distant ISP facilities even for local traffic, juxtaposes with the greater uniformity and equality in telecommunications cost sharing.

One key way to reduce Internet traffic costs lies in the installation of local or regional facilities that link many ISPs and their separate networks. Such Internet Exchange Points (“IXPs”) make it possible for each participating ISP to better exploit the Internet’s “network of networks” synergy, i.e., the opportunity for an ISP to hand off traffic for carriage by other ISPs instead of having to

46. “In some cases, where there is no local or regional facility for the exchange of Internet traffic, developing country ISPs must pay for international transit facilities to deliver local traffic. This practice is know as “tromboning.” InfoDev and the International Telecommunication Union, ICT Regulation Toolkit, 4.8.1 The Role of Internet Exchange Points (undated), available at http://icttoolkit.infodev.org/en/Section.2192.html [hereinafter cited as ICT Regulation Toolkit].

47. “Without an IXP, ISPs have to pay international bandwidth prices for traffic that is actually destined locally within a particular country. In most cases the traffic travel overseas through two satellite hops before it reaches its destination a few kilometers across a city. With an IXP present within a country, each ISP pays HALF the cost to reach each of the other ISPs, since they all meet at a neutral point in the middle.” African Internet Service Providers Association, “The Halfway Proposition” Background Paper on reverse subsidy of G8 countries by African ISPs, p. 4, presented at the Conference of African Ministers of Finance, Planning and Economic Development, Johannesburg, South Africa (Oct. 19, 2002), available at http://afrispa.skybuilders.com/.

48. Internet Exchange Points (IXPs) in developing countries are important for a number of reasons. They:

Enable efficient, cost effective management of Internet traffic,

Provide an interface between multiple ISPs. This enables ISPs to avoid tromboning local and regional traffic,

Should help stimulate market entry by new ISPs, web hosting and equipment co-location developers, and content creators. ICT Regulation Toolkit, 4.8.2 Supporting IXPs in Developing Countries, available at http://icttoolkit.infodev.org/en/Section.2194.html.
engineer a longer, possibly circuitous route. ISPs interconnect networks at IXPs, because individually and collectively they can reduce their bandwidth and line transmission costs, operate more efficiently and provide more reliable service with reduced instances of service delay (latency).

IXPs provide a centralized hub and spoke network typology instead of requiring each ISP, regardless of size, traffic volume and capitalization, to erect a mesh network covering the globe. Because the Internet offers access to content and users anywhere, each ISP has to secure network connections to all potential recipients of content and senders of content, or competitively suffer for the lack of global reach. Reciprocal interconnection—whether freely provisioned or provided for a fee—makes it possible for an ISP to access the entire global Internet cloud for its subscribers and thereby to accrue increasing value from the Internet, because its utility and value increase with the number of accessible points of communications.

ISPs operating without the benefit of a local or even regional IXP bear the financial burden of having to secure links with the largest and most desirable Tier-1 ISP networks at a location at their own expense possibly thousands of miles distant, on terms primarily established by the larger ISP. Remotely located ISPs, and ones with comparatively fewer subscribers, networking options, and content options must procure expensive telecommunications links, including one or more satellite hops, or a long submarine cable link to route traffic to and from an ISP leasing transit access to networks and content throughout the world. ISPs do not split operating costs in half, like the telecommunications half-circuit. Accordingly, smaller and remotely located ISPs must pay for the complete telecommunications links to ISPs willing to provide transit access to the Internet cloud.

49. "IXPs provide a centralized hub and spoke network typology. These enable ISPs to hand off traffic directly to other nearby ISPs, and to aggregate long haul access. IXPs offer traffic switching and routing flexibility. By using an IXP, ISPs can individually and collectively reduce their bandwidth and line transmission costs, provide more reliable service with lower latency, and operate more efficiently." ICT Regulation Toolkit, 4.8.1 The Role of Internet Exchange Points, available at http://icttoolkit.infodev.org/en/Section.2192.html.

50. See ICT Regulation Toolkit, 4.8.1, Figure 2, available at http://icttoolkit.infodev.org/en/Section.2192.html.

51. Supra note 28.

52. For an assessment of self provisioning financial impact on Australian ISPs see John Hibbard, John de Ridder, Dr. George R. Barker and Professor Robert Frieden, International Internet Connectivity and its Impact on Australia, Final Report on an Investigation for the Department of Communication Information Technology and the Arts,
Practically speaking, even the largest ISPs need to rely on the network reach and customer accessibility provided by other ISPs. But unlike the large Tier-1 ISPs who agree to handle the traffic of other similarly situated ISPs on a zero cost basis, small and remotely located ISPs become clients and resellers of the network services provided by large ISPs. This may appear unfair in light of “democratic” telecommunications line cost sharing arrangements, but the Internet operates largely free of rate regulation and other forms of government oversight. Tier-1 ISPs typically can require smaller carriers to pay for network access, but on the other hand the smaller ISPs do have a number of Tier-1 ISP network options. With payment for access, smaller ISPs not only have access to a Tier-1 ISP’s subscribers, but also the content those subscribers make available and the network access the Tier-1 ISP itself has secured from other ISPs located throughout the world.

Some would argue that market-based Internet access achieves an efficient outcome while creating incentives for ISPs to continue building out and expanding networks. But on the other hand a disproportionate financial burden foisted on the poorest ISPs and their subscribers has the potential to exacerbate the “digital divide” which separates people with easy and robust ICE access opportunities and those without.53

IV. Current Marketplace Conditions Affecting Peering/Transit Decision-making

The process by which an ISP qualifies for free peering, as opposed to having to pay for peering or transit services, remains largely private. ISPs negotiate terms and conditions, and few offer public disclosure of the criteria used to qualify for peering. Likewise, the final negotiated agreement falls under comprehensive nondisclosure agreements making a forensic examination quite difficult.

However, several Tier-2 ISPs have posted on their websites general qualifications for its agreement to peer.54 Having now merged

with AT&T, BellSouth, Pacific Telosis, Ameritech and others, SBL now operates as a major Tier ISP. The merged AT&T requires peering candidates to meet rigorous qualifications. Peering requirements offer the best available snapshot of the typical prerequisites for securing domestic U.S. peering agreements. AT&T requires the following of peering candidates:

1. Peer must operate a U.S.-wide IP backbone whose links are primarily OC192 or greater in size.
2. Peer must meet AS7018 at a minimum of five mutually agreeable geographically diverse points. The U.S. interconnection points must be chosen from the following list of cities, and must include at least one city on the U.S. east coast and one on the U.S. west coast: New York City, Washington D.C./Ashburn, VA, Atlanta, Chicago, Dallas, Seattle, San Francisco/San Jose and Los Angeles. In addition one peering point must be in a European country and another in an Asian-Pacific country. Peering outside the U.S. will be with AT&T’s regional AS only.
3. Traffic traveling over the U.S. interconnection links to/from AS7018 must be on-net only and must amount to at least 1 Gbps peak in total.
4. Interconnection bandwidth must be at least OC12 at each U.S. interconnection point.
5. A customer of any of AT&T’s dedicated IP services on AS7018 may not simultaneously be a peer of AS7018.
6. Peer must have a professionally managed 24x7 NOC. Peer must agree to fix any problems within a reasonable timeframe. Peer must also agree to actively cooperate to resolve security incidents, denial of service attacks and other operational problems.
7. Peer must maintain a balanced traffic ratio between its network and AS7018. In particular:
 a. No more than 2.0:1.0 ratio of traffic flowing in either direction, on average.

b. Balanced time of day traffic distribution currently as measured by peak to average traffic levels.

8. Peer must abide by the following routing policy:
 a. Peer must use the same peering AS at each U.S. interconnection point, and must advertise a consistent set of routes at each point.
 b. No transit or third-party routes are to be announced; all routes exchanged must be customer routes.
 c. We expect that peers will filter route announcements from their customers by prefix.
 d. Neither party shall abuse the peering relationship by any of the non-exhaustive list of actions following, such as: pointing a default route at the other or otherwise forwarding traffic for destinations not explicitly advertised, resettling next-hop, selling or giving next-hop to others.

9. Existing peers of AS7018 will have their peering status reviewed periodically to ensure joint capacity planning and to ensure that all criteria continue to be met. AT&T reserves the right to terminate peering, upon notice period as determined by the parties’ agreement, with peers who do not meet the criteria described above. Maintaining a peering relationship with AT&T is also contingent upon the potential or existing peers continued financial stability. Periodic review of the policies above will be conducted to ensure that the criteria and eligibility requirements are consistent with AT&T growth and expansion.

10. For current and potential peers having substantial portions of their network outside the U.S., AT&T may elect to evaluate the conditions for peering with that peer under the policies governing its European, Latin American, Canadian or Asia-Pacific IP ASNs, as set forth above.55

11. Consistent routes announcements at all public peering points.

V. Traditional End User Payment Models

Telephone companies traditionally have charged customers for long distance services on a usage sensitive basis, i.e., minutes of use, but have offered most wireline local service options on an umetered basis. Before regulatory policies have favored averaging and “integrating” the costs of long distance particularly to blunt the higher cost of serving Alaska, Hawaii, Puerto Rico, the U.S. Virgin Islands, and rural locales telephone companies. Most telephone subscribers continue to pay for long distance telephone service on a per minute basis, at fixed, “postalized” rates regardless of distance, much like fixed postal rates for letters whether sent across town or across the nation.

Recently telephone companies have offered unmetered AYCE long distance calling subscriptions primarily in response to such options available from VoIP ventures and the fact that many mobile telephone carriers offer customers the option of using available minutes for “free” long distance calling. In addition to competitive necessity, significant reductions in interconnection charges make it

56. See Integration of Rates and Services for the Provision of Communications by Authorized Common Carriers between the Contiguous States and Alaska, Hawaii, Puerto Rico and the Virgin Islands, Final Recommended Decision, 9 FCC Rcd. 2197, 2198 n.2 (1993) (“Rate integration’ is the Commission policy that was adopted to describe service between the contiguous states and Alaska, Hawaii, Puerto Rico and the Virgin Islands (noncontiguous points) at rates that are equivalent to those prevailing for comparable distances in the contiguous 48 states.”).

57. Section 254(g) of the Telecommunications Act of 1996, 47 U.S.C. § 254(g)(2005) codified prior FCC rate averaging policy: “Within 6 months after February 8, 1996, the Commission shall adopt rules to require that the rates charged by providers of interexchange telecommunications services to subscribers in rural and high cost areas shall be no higher than the rates charged by each such provider to its subscribers in urban areas. Such rules shall also require that a provider of interstate interexchange telecommunications services shall provide such services to its subscribers in each State at rates no higher than the rates charged to its subscribers in any other State.”

possible for carriers to offer unlimited local and long distance calling options.

ISPs historically have offered customers AYCE service. ISPs first provided Internet access using local business lines that themselves may not have been metered by local exchange carriers. Additionally, it appears that customers expected Internet access to match the available unmetered local calling options, notwithstanding the fact that the local call usually interconnected with a long haul routing to reach distant sources of Internet content.

Most ISPs initially offered a “one size fits all” dial-up access. As broadband access options became available via Digital Subscriber Links and cable modems, customers could generally expect to receive ISP’s differentiated service based on the throughput. ISPs now offer services analogous to an airline’s first class, business class, and economy seating based on the bit rate speed for downloading and uploading content. Few observers would consider providing different bit rates and service price points unreasonable discrimination as opposed to reasonable product differentiation.

VI. Reshaping the Internet Using the Bellhead Model

Incumbent telecommunications carriers in the United States, such as AT&T, Verizon, and Qwest, own and operate many of the major Tier-1 ISPs that have a significant market share. In the European Union and other nations, companies that formerly enjoyed a monopoly, such as NTT Corporation, British Telecom, Deutsche Telekom, and Singtel, also have a dominant market share. The merger activities of telecommunications carriers includes the acquisition of major Internet infrastructure operators, including networks previously operated independently by MCI, AT&T, GTE, BBN, Worldcom, MFS Communications, UUNet, Savvis and Verio.

59. Bell Atlantic, now known as Verizon, described its digital subscriber line service as “an interstate data special access service that provides a high speed access connection between an end user subscriber and an Internet Service Provider (ISP) by utilizing a combination of the subscriber’s existing local exchange physical plant (i.e. copper facility), a specialized DSL-equipped wire center, and transport to the Asynchronous Transfer Mode Cell Relay Service where the ISP will connect to Bell Atlantic’s network.” Bell Atlantic Telephone Companies, CC Docket No. 98-168, Tariff No. 1, Transmittal No. 1081, Order, DA 98-1988, 13 FCC Rcd. 18911 (1998).

The senior managers of incumbent telecommunications carriers have the ability and apparently now the interest to manage the Internet. This ability lies in the carriers' market share and ownership of major Tier-1 ISPs. The interest largely stems from the need to establish new profit centers as traditional telephony becomes less profitable and incumbent carrier market shares decline. Incumbent carriers have made sizeable investments in network upgrades to provide broadband services and to target customers with "triple-play" or "quadruple-play" bundles of wireline and wireless telephony, video programming, and Internet access.

Having seen the massive rise in capitalization accrued by some Internet content and service providers, such as Google, incumbent carriers also want upward trajectory in their stock price and revenue streams. Some of the major broadband network operators believe the best way to achieve this goal involves partitioning network bandwidth and prioritizing bitstreams by offering different quality of service guarantees. To some observers this strategy constitutes a form of service discrimination that violates a longstanding tradition of network neutrality in the switching, routing, and transmission of Internet traffic. Since its inception the Internet has operated as a seamlessly interconnected collection of networks whose operators typically agree to handle the traffic of other operators on a "best efforts" basis. Opponents of compulsory neutrality claim that they

61. Frieden, supra note 20 at 125-144.

64. "The Internet is a vast network of individual computers and computer networks that communicate with each other using the same communications language, Transmission Control Protocol/Internet Protocol (TCP/IP). The Internet consists of approximately more than 100 million computers around the world using TCP/IP protocols. Along with the development of TCP/IP, the open network architecture of the Internet has the following characteristics or parameters: 1. Each distinct network stands on its own with its own
have no legal obligation to operate as common carriers, that their interconnection arrangements result from commercial necessity, and have achieved ample connectivity with plenty of routing options available to all operators. The option of offering a "better than best efforts" level of service provides a means for consumers and carriers to secure and pay for premium service, if so desired.

Replacing best efforts with variable quality of service ("QOS") offers and AYCE Internet access with metered service imposes traditional telephony interconnection, cost recovery, and consumer marketing strategies. The value proposition currently enjoyed by consumers will change and may decline should incumbent carriers succeed in migrating users to pricing arrangements and service plans that incorporate these strategies. Advocates for pricing, interconnection and QOS flexibility characterize the initiative as lawful price discrimination that can offer consumers greater flexibility and possibly lower bills for low volume users. Net neutrality

specific environment and user requirements, notwithstanding the use of TCP/IP to connect to other parts of the Internet. Communications are not directed in a unilateral fashion. Rather, communications are routed throughout the Internet on a best efforts basis in which some packets of information may go through one series of computer networks and other packets of information go through a different permutation or combination of computer networks, with all of these information packets eventually arriving at their intended destination. 2. Black boxes, for lack of a better term, connect the various networks; these boxes are called 'gateways' and 'routers.' The gateways and routers do not retain information but merely provide access and flow for the packets being transmitted. 3. There is no global control of the Internet." Konrad L. Trope, Voice Over Internet Protocol: The Revolution in America's Telecommunications Infrastructure, 22 COMP. & INTERNET L. 1. No. 12, 1, 4 (Dec. 2005).

65. Title II of the Communications Act of 1934, as amended, 47 U.S.C. § 201 et seq. requires common carriers to offer rate regulated, cost-based service to the public on a nondiscriminatory basis. "Common carrier legislation and regulation were initially intended to cover wired telecommunications services. Telephone and telegraph communications were perceived as a 'natural monopoly' early in the twentieth century. Because of the prohibitive cost of building a wired telephone or telegraph network combined with the desire to provide 'universal service' to consumers, the government's original legislative and regulatory approach was to foster and protect AT&T's monopoly in telephone wires, switches, and services." Jessica Finley, Anticipating Regulation of New Telecommunications Technologies: An Argument for the European Model, 26 NW. J. INT'L. L. & Bus. 447, 450 (Winter, 2006).

advocates see the initiative as an attempt to legitimize network bias, bit discrimination, and fragmentation of the Internet into different service levels and brands.67 The rhetoric and volume of the debate has generated much confusion with no movement to a consensus.68 No compromise codified into law.69

Regardless of the private and commercial nature of the currently constituted Internet, advocates for network neutrality emphasize the positive networking effects of a collective and unbalkanized system. If major ISPs can freely block and degrade specific traffic streams, net neutrality advocates warn of societal losses as the Internet becomes a more expensive and less serendipitous experience. Net bias advocates scoff at such global pronouncements and offer their view that combining plain vanilla routing with superior service offers options no different than the multiple classes of service provided by most airlines, or the qualitative difference between free and toll highways.

VII. What Is Network Neutrality?

Advocates for network neutrality in the United States and elsewhere have called upon NRAs and legislatures to ensure that ISPs cannot discriminate against, or favor specific bitstreams. They believe this network neutrality principle should apply both upstream to other ISPs, or downstream to other ISPs and, in turn, the treatment of end users. Net neutrality advocates believe that the Internet has contributed to national productivity, economic opportunity, and innovation in light of its nondiscriminatory, end-to-end connectivity.

Many net neutrality advocates speak and write in apocalyptic terms that allowing price and service discrimination will eviscerate the Internet and enable carriers to delay or shut out competitors and ventures unwilling or unable to pay surcharges. The head of a consumer group claims that incumbent telephone and cable companies can reshape the nation’s digital destiny by branding the Internet and foreclosing much of its societal and cultural benefits. Net bias advocates, emphasize that ISPs should have unfettered pricing freedom which has promoted innovation, risk tasking, and diverse services and features.

Few advocates for net neutrality have articulated what, if any, pricing, interconnection, and QOS discrimination they believe can occur without defeating the goal of neutrality. Two academic analysts, generally in favor of network neutrality, or at least no major impediments to end-to-end connectivity, have offered two concessions to carrier operational flexibility. Professor Lawrence Lessig differentiates between ISP pricing strategies that auction off lanes of broadband service by tiering access between content sources and users, and ISPs who offer end users different throughput speeds.

or permissible volume of traffic. Access-tiering violates Professor Lessig's sense of network neutrality because it would weaken competition for Internet services and the potential for continuing growth by erecting additional financial barriers to entry by innovators unable to pay the surcharges demanded by major network operators. Professor Lessig considers consumer-tiering a permissible strategy by network operators to recoup infrastructure investments and to create necessary incentives for more investment even though it probably would result in changing the consumer value proposition by helping network operators extract higher revenues particularly from large volume "power" users.

Professor Ed Felten distills network discrimination in terms of whether an ISP drops packets of a content provider based on operational necessity or deliberate degradation of service. Minimal dropping of packets normally occurs in peering and transiting when an ISP's best efforts cannot accommodate the current volume of traffic. Absent a strategy to prioritize packets, the set protocols and the contracts executed between ISPs call for "first come, first served" processing. Non-minimal dropping of packets would occur when an ISP prioritizes packets in such ways as to trigger delays and lost packets even in the absence of congestion.

In Professor Felten's dichotomy of packet dropping, network bias occurs when an ISP partitions its networks in such a way as to all but guarantee that non-priority bitstreams experience lost packets and degradation of service quality even when it is possible for the ISP to avoid dropping any packets. When packet dropping occurs even during uncongested conditions an ISP engages in anticompetitive discrimination because the ISP deliberately degrades service, not to accommodate a priority customer but to punish a low paying one. Permissible net bias occurs when an ISP carves out a portion of its network to create a virtual, stand alone network. This off network design provides something akin to an intranet, i.e., a partitioned network available to single corporate client or group of customers.

However, the intranet may be virtual in nature and designed primarily to guarantee two dichotomous routing experiences based on price: near certain real time delivery of packets without loss and near certain packet dropping.

VIII. The FCC's Four Network Freedoms

Over several years, the FCC has aggressively sought to free carriers providing Internet access of any significant regulatory responsibilities that apply to telecommunications service providers. The Internet has flourished in part due to a “hands off” approach by governments and the willingness of network operators to make increasing investments in the infrastructure needed to transport the bits that correspond to commercially successful content and services. As the Internet becomes a conduit for most converged services, the ventures operating bit transmission networks must make additional, substantial investments to handle growing Internet traffic along with new traffic streams that include full motion video.

At the vigorous urging of incumbent carriers, the FCC has perceived the need to create more incentives for carriers to make broadband investments. The Commission has largely dismantled compulsory access requirements and the use of mandatory pricing model that forces incumbent carriers to offer network elements

rates well below what the carriers consider cost-based, or what they would demand in arm’s length negotiations. Additionally, the FCC has eliminated traditional common carrier regulatory burdens for carriers providing Internet access and services. The FCC has eliminated such “legacy” technologies as the copper wire, local loop that provided the conduit for regulated services. Collectively these deregulatory initiatives have freed incumbent carriers of having to share and interconnect facilities providing information services, or to provide these facilities on a nondiscriminatory and rate regulated basis.

In light of such deregulatory fervor it comes as somewhat of a surprise to see the FCC weigh in on the network neutrality debate at all. In a non-binding, non-compulsory Policy Statement the FCC has articulated four “principles”:

77. The FCC has required incumbent local exchange carriers to offer competitor access to network facilities and services on the basis of a Total Element Long Run Incremental cost analysis. “TELRIC obliges both incumbents and state regulators to set prices based on the long-run costs that would be incurred to produce the services in question using the most-efficient telecommunications technology now available, and the most efficient network configuration. Incumbents that have aging and inefficient equipment thus must sell for less than their historical cost; the old system that calculated rates based on actual cost of equipment plus a reasonable rate of return on capital is out the window.” AT&T Communications of Illinois, v. Illinois Bell Telephone Co. 349 F.3d 402, 405 (7th Cir. 2002). The FCC expects to eliminate or reduce the application of TELRIC pricing. See Review of the Commission’s Rules Regarding the Pricing of Unbundled Network Elements and the Resale of Service by Incumbent Local Exchange Carriers, WC Docket No. 03-173, Notice of Proposed Rulemaking, 18 FCC Rcd 18945 (2003).

consumers are entitled to access the lawful Internet content of their choice;

(2) consumers are entitled to run applications and services of their choice, subject to the needs of law enforcement;

(3) consumers are entitled to connect their choice of legal devices that do not harm the network; and

(4) consumers are entitled to competition among network providers, application and service providers, and content providers. 79

The FCC’s four Network Freedoms appear noncontroversial, but they have no impact on the pricing, interconnection and QOS differentiation under their current status as policy objectives. 80 However, the Commission has intervened where a wireline telephone company deliberately blocked—as opposed to degraded—VoIP traffic terminations. In Madison River Communications, LLC, 81 the Commission fined a telephone company and ordered it not to block

80. Similarly the FCC may not enforce the network neutrality commitments made by AT&T as last minute concessions to secure approval of its merger with BellSouth. In a letter to the FCC, AT&T proposed to embrace the FCC’s four Network Freedoms for 30 months running from the merger closing date, and to apply network neutrality principles for its broadband Internet access services running between subscribers and the first Internet exchange point for a period of two years running from the merger closing date or upon the effective date of federal legislation. AT&T expressly reserved the option not to apply network neutrality principles for its Internet Protocol Television (“IPTV”) service and for link beyond the first Internet Exchange point. The commitment does not provide specifically whether these conditions exempt AT&T from a network neutrality commitment for any fiber optic broadband link that might also offer IPTV. AT&T BellSouth Merger Approval, available at http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-269275A1.pdf.

To make matters even more murky FCC Chairman Martin and Republican Commissioner Tate issued a statement on the merger stating that they consider the FCC not bound by all of the concessions allegedly extracted by the Democratic Commissioners: “Importantly, however, while the Democrat Commissioners may have extracted concessions from AT&T, they in no way bind future Commission action. Specifically, a minority of Commissioners cannot alter Commission precedent or bind future Commission decisions, policies, actions, or rules. Thus, to the extent that AT&T has, as a business matter, determined to take certain actions, they are allowed to do so. There are certain conditions, however, that are not self-effectuating or cannot be accomplished by AT&T alone. To the extent Commission action is required to effectuate these conditions as a policy going forward, we specifically do not support those aspects of the conditions and will oppose such polices going forward.” AT&T BellSouth Merger Approval, Joint Statement of Chairman Kevin J. Martin and Commissioner Deborah Taylor Tate (Dec. 29, 2006), available at http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-269275A2.doc.

VoIP traffic terminations. Arguably, the consumer entitlement to
competition among software application providers, such as VoIP
ventures, means that the Commission considers network neutrality a
viable concept at least where compulsory common carriage
responsibilities continue to apply as in the case with local wireline
telephone companies.

IX. Whether and When Network Neutrality Principles and
Possibly Regulations Are Necessary

Advocates for network neutrality appropriately note the synergy
and serendipity achieved when the Internet operates as a network of
networks and offers consumers seamless, global connectivity based on
best efforts routing and reciprocal carriage agreements among ISPs.
Consumers enjoy an incredible value proposition when they can
access the Internet on an unmetered, AYCE basis and acquire
attractive content subsidized by advertisers who can exploit the
AYCE subscription option by adding to the downloaded packet
payload. The high value proposition offered to consumers jibes with
the Nethead philosophy about making the Internet ubiquitous with
more emphasis on connectivity and with less regard for cost recovery
and analysis of cost causation.

Netheads helped create the Internet and the initial reciprocal,
zero payment peering models. At the Internet’s inception, Netheads
could emphasize connectivity over cost, because governments
sponsored incubation efforts as both underwriters and anchor
tenants.\(^2\) As governments have largely eliminated their financial
sponsorship and as Bellhead-dominated telecommunications carriers
seek to recoup their Internet investment, cost causation and cost
recovery have become substantially more important.

The net neutrality versus net bias debate focuses on what
strategies and tactics in accounting for costs and recovering them are
reasonable and fair versus anticompetitive and unjustified.
Unreasonable net bias occurs when an ISP pursues a discrimination
strategy against a specific type of bitstream or generator of a
bitstream without a reasonable and fair minded financial or
operational justification. ISPs can and should drop packets based on
congestion and the inability to route bits. Net bias occurs when an ISP

\(^2\) See, Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts and Stephen Wolff, A Brief
drops packets or denies access—even when contractually obligated to provide it—based on artificially induced conditions that simulate congestion, despite the fact that ample capacity exists to switch and route the traffic.

Net bias does not occur simply when ISPs elect to offer end users different throughput speeds and even a daily or monthly quota of permissible throughput. Likewise, net bias does not occur when an ISP negotiates different interconnection and access arrangements with upstream peers and clients. Net bias does not even occur when an ISP deliberately partitions bandwidth so that a “private” or premium routing option exists. However, net bias does occur when an ISP engages in tactics designed to render “public” peering and transit routes congested, unreliable, or blocked despite the fact that ample, unpartitioned capacity to switch and route the traffic remains available.

X. Permissible Network Bias

Advocates for network flexibility correctly state that external, non-market driven constraints on their ability to price discriminate can adversely impact their incentive to invest in broadband infrastructure and their ability to recoup that investment. ISPs have avoided common carrier responsibilities and the Internet largely functions as a product of countless interconnection arrangements flexibly negotiated and executed free of government oversight. ISPs correctly note that only in rare instances has an interconnection dispute triggered allegations of anticompetitive practices and rarely if ever has a consumer lost access to a content source or addressee as a result of network inaccessibility or balkanization.³³

XI. Variable Bandwidth and Throughput

Network flexibility in pricing, service provisioning and QOS makes economic sense and does not violate a reasonable expectation of network neutrality. ISPs should have the option of offering end users, peers and transit clients options as to the amount of available throughput. Just as airlines offer first, business, and economy seating and car drivers have free and toll highway options, Internet consumers should have access to different Internet experiences. Variable throughput options already exist upstream from end users to

peers and transit clients who reciprocate with connectivity at a specified bandwidth, or pay for a specific amount of connectivity.

XII. Bandwidth Partitioning

Absent contractual commitments with peers and transit clients to provide a specific level of service and throughput, an ISP also should have the option of partitioning its available bandwidth. Partitioning enables a facilities-based ISP to meet different levels of peering requirements as well as to offer transit clients different amounts of throughput. If an ISP can engineer a complete route, whether via its own facilities, or network capacity allocated to it by another carrier, the ISP can offer end-to-end, QOS performance guarantees at a premium price.

Partitioning constitutes legitimate price and quality discrimination, even if the remaining public, non-premium throughput declines. Net bias occurs if and only if the ISP deliberately degrades service on public peering and transit links, despite ample network capacity to offer uncongested switching, routing and packet transmission.

XIII. Metered Service

ISPs do not violate a reasonable sense of net neutrality by migrating consumers to metered Internet access. While metering would reduce the value proposition to consumers Internet AYCE access should not be a government mandated right. Metering satisfies the Bellhead quest for cost attribution and recovery and surely would force consumers to rethink their usage patterns and tolerance for unsolicited content, the core financial model for subsidizing consumer access to desired content.

Metering and caps on throughput might create new and possibly lower price points for occasional users. However, the Bellhead experience with local wireline, plain old telephone service and many types of wireless packages confirm that few consumers like having to think about the number of calls they make and their minutes of use.

XIV. Better Than Best Efforts Routing

Despite a Nethead heritage of a one size fits all Internet, ISPs already have diversified the terms and conditions under which they switch, route and transport the packets generated by a third party content provider, or another ISP. Better-than-best-efforts routing is not a contradiction, or unreasonable discrimination against content
generators, consumers or ISPs that elect not to pay for superior treatment. However, an ISP may not unilaterally change the terms of interconnection that would violate an otherwise enforceable contract or Service Level Agreement.

XV. Deliberate Packet Loss

Probably the most troubling scenarios of unfettered network bias lies in the potential for seemingly legitimate QOS, interconnection and pricing discrimination to obscure, unfair trade and anticompetitive practices. Internet protocols have a built in system for managing congestion, but ISPs appear to have the ability to create or simulate congestion and the necessity for dropping packets when no real congestion takes place. False congestion84 to punish, discipline or competitively outmaneuver competitors, or customers refusing to pay newly imposed surcharges, appears the same as the manufacture of congestion by energy traders keen on artificially raising prices.85

Existing peering and transit agreements may lack a specific prohibition of deliberate packet loss, based on the presumption that best efforts routing implies nondiscrimination. Because ISPs in the future may have the option of offering biased and discriminatory network routing, regulatory or judicial remedies may be needed to foreclose and punish deliberate degradation of service, particularly when packet loss and other strategies are directed at specific content providers.

84 ISPs surely should have the option of offering a premium peak service that would offer higher likelihood of undropped packets and timely delivery even under truly congested conditions. See, Christopher S. Yoo, Network Neutrality and the Economics of Congestion, VANDERBILT UNIV. LAW SCH. LAW & ECON., Working Paper, 05-28 (2005), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=825669.

85 “So Enron was also responsible for some of California’s power crisis! What was then a profoundly corrupt enterprise manipulated the Golden State’s power market to help create artificial shortages that would jack up prices. A particularly repellent example of this enterprise was Enron’s so-called Death Star strategy, which, as a company memo put it, let Enron be paid ‘for moving energy to relieve congestion without actually moving any energy or relieving any congestion.’ In one case, Enron bought power in California at a capped price of $250 a megawatt hour and resold it in Oregon for $2,500. The company also “laundered” electricity to avoid federal price caps.” Providence Journal-Bulletin (May 22, 2002) (retrieved from Lexis-Nexis Academic Universe).
XVI. Targeting Large Volume Content Generators for Punishment or Extortion

Several senior managers of incumbent telecommunications carriers have derided high volume content generators, such as Google, as free riders of the carriers' broadband networks. Even as these managers imply that they can prioritize bitstreams, one representative has labeled as "chicken littles" articulated concerns about the adverse impact of a tiered Internet.

Incumbent carriers have presented quite a mixed message. On one hand they have achieved incredible deregulatory success by representing the robustly competitive nature of the broadband Internet access marketplace. This environment does not yet exist in light of the current 99.4% broadband market share the FCC itself has calculated for cable modem and DSL service. Nevertheless, the presumption of robust competition emboldens the incumbent carriers

87. "We believe in finding a commercial solution to this issue. The marketplace has tools to sort this out," said Whitacre in response to those calling for legislated Net neutrality. Comparing those who call for legislation to Chicken Little, Whitacre argued that service providers do not need Congress to tell them how best to run their businesses." Pete Comas, *Whitacre Calls for Less Regulation*, VOIP MAGAZINE, (March 21, 2006), available at http://www.voip-magazine.com/content/view/2512/.

88. One knowledgeable industry analyst deems this strategy extortion: "I think it’s probably true that companies are coming to Qwest willing to pay for better treatment on their network," he said. "But I think they’re doing it out of fear. It’s legalized extortion." (quoting Jeff Pulver, CEO of Pulver.com, Qwest Comments).

to portray themselves as victims of thievery by the likes of Google, eBay, and Yahoo.

On the other hand, these very carriers have threatened to engage
in practices that comes across as traditional monopolist responses to
incipient competition. True to its Bell System heritage, incumbent
telecommunications firms imply the ability and willingness to employ
anticompetitive interconnection, QOS and access pricing strategies.
Threats of surcharges or degraded service imply that incumbent
carrier managers may still operate with a Bellhead orientation that
they can continue to manage a bottleneck, engage in margin
squeezes,\footnote{A margin price squeeze “refers to situations in which a vertically-integrated
dominant firm uses its control over an input supplied to downstream rivals to prevent
them from making a profit on a downstream market in which the dominant firm is also
active. The dominant firm could in theory do this in a number of different ways. It could
raise the input price to levels at which rivals could no longer sustain a profit downstream.
Alternatively, it could engage in below-cost selling in the downstream market, while
maintaining a profit overall through the sale of the upstream input. Finally, the dominant
firm could raise the price of the upstream input and lower the price of the downstream
retail create a margin between them at which a rival would not be profitable.” Damien
Geradin and Robert O’Donoghue, The Concurrent Application of Competition Law and
Regulation: The Case of Margin Squeeze Abuses in the Telecommunications Sector, 1 J.
COMP. L. & ECON. 355, 357-58 (June, 2005).} readily meter network use and discriminate between
similarly situated traffic streams. Innovations in bit and packet
sniffing do provide the opportunity to discriminate by type of service,
(video versus email) type of network user, (transit for the customer of
another ISP or delivery for a customer) and type of packet, (content
generated by one unwilling to pay a surcharge or content generated
by one willing to pay a surcharge). Only time will tell whether
incumbent carriers pursue lawful price and service discrimination, or
unlawful practices.

Rather than threaten lawful or unlawful retaliation through
delayed, degraded and dropped packets, incumbent carriers should
market a superior Internet experience for high volume content
 generators and their customers. These ventures may lack privity of
contract with companies such as Google because incumbent carriers
and their ISP affiliates may not have a direct peering or transit
agreement. Rather than alienate them with threats, incumbent
operators should come up with marketing strategies to entice these
attractive prospects customers to become customers. In any event,
both end users serving ISPs and upstream operators should face an
explicit prohibition on content provider specific QOS and packet
deradation and discrimination.
XVII. Port Blocking

Even the FCC appears to agree that an ISP cannot single out a specific lawful user of the ISP's network and deny service to that user. When an ISP agrees to peer with another ISP, or to provide transit service over a number of "advertised routes," the ISP has contractually committed to carry any and all packets from the other ISP regardless of the identity and marketplace success of the other ISP's customers. The peering or transit providing ISP may demand more compensation or the reciprocal expansion of throughput from other ISPs. However, the ISP should have no lawful opportunity to deny onward packet transmission to specific customers of other ISPs, or specific types of traffic generated by the customers of other ISPs.

Port blocking involves the conscious decision by one ISP to deny onward transmission of traffic, or delivery of traffic, to an intended recipient. An ISP engaged in port blocking might determine that most VoIP traffic destined for a final recipient traverses one specific routing arrangement. An ISP keen on blocking VoIP, perhaps to shelter an access charge payment revenue stream accruing to an affiliated telephone company, might block the known routing configuration for unaffiliated VoIP operators. The Madison River company pursued this strategy and the FCC fined the company. Additionally, several cable television companies allegedly have blocked ports, filtered IP addresses, and have pursued other means to thwart or slow transit via their networks.91

The FCC could fine Madison River, because the company blocking packet delivery operated as a conventional, common carrier telephone company subject to Title II of the Communications Act of 1934, as amended. The Commission probably would have had no enforcement mechanism should the port blocking occur in the network of a company classified as providing information services,92

92. Information service is defined as "the offering of a capability for generating, acquiring, storing, transforming, processing, retrieving, utilizing, or making available information via telecommunications, and includes electronic publishing, but does not include any use of any such capability for the management, control, or operation of a telecommunications system or the management of a telecommunications service." 47 U.S.C. § 153(20). The FCC does not apply common carrier regulation to information service providers under Title II of the Communications Act, 47 U.S.C. §201 et seq. The Commission uses its ancillary regulatory power under Title I, which, for example, has been invoked to require VoIP service providers to cooperate with law enforcement authorities regarding wiretaps and to coordinate with wireline carriers in the provision of emergency 911 access. See Philip J. Weiser, Toward a Next Generation Regulatory Strategy, 35 LOY.
including VoIP and other functional equivalents to conventional circuit switched telephony like that provided by Madison River. Accordingly, port blocking strategies should be deemed impermissible by telecommunications service providers and information service providers alike absent a compelling justification, e.g., preventing the dissemination of harmful content such as a virus. Where concerns about public health and safety exist, (emergency 911 access via VoIP telephones), the FCC has refrained from relying on a marketplace generated remedy.

XVIII. Unfair Trade Practices and Affiliate Favoritism

A telephone company and even information service providers, such as ISPs, may look to port blocking as a way to enhance the marketplace attractiveness of corporate affiliates, particularly if the carrier can obscure its tactics. Technological and market convergence as well as deregulation provide incentive for ventures to integrate vertically and horizontally. Triple-play and quadruple-play offers that blend wireline and wireless telephony, Internet services, and access to video programming demonstrate that such integration can accrue economies of scale and scope. They also create incentives for operators to tilt the competitive playing field to the advantage of corporate affiliates. In the absence of structural separation between

93. “Canadian customers of Rogers, Canada’s largest cable ISP, have speculated for months that the company has begun to block access to BitTorrent as well as the downloading of podcasts from services such as iTunes. While Rogers initially denied the charges, it now acknowledges that it uses “traffic shaping” to prioritize certain online activity. As a result, applications that Rogers deems to be a lower priority may cease to function effectively.” Michael Geist, Towards a two-tier internet, BBC NEWS, Technology (Dec. 22, 2005), available at http://news.bbc.co.uk/1/hi/technology/4552138.stm.

95. Initially the FCC enthusiastically embraced structural separation as an effective way to ensure non-discriminatory treatment between an incumbent local exchange carrier (“ILEC”) on one hand, and ILEC affiliates and competitors operating in markets that offer enhancements to basic telecommunications transmission capacity. On the other hand, in the Second Computer Inquiry, the FCC required AT&T to provide enhanced services, which have close similarity to information services, only through separate subsidiaries. Amendment of Section 64.702 of the Commission’s Rules and Regulations (Second Computer Inquiry), CC Docket No. 20828, Final Decision, 77 FCC 2d 384 (1980), on reconsideration, Memorandum Opinion and Order, 84 F.C.C. 2d 50 (1980) and Memorandum Opinion and Order on Further Reconsideration, 88 F.C.C. 2d 512 (1981), aff’d sub nom. Computer and Commun. Indus. Ass’n v FCC, 693 F.2d 198 (D.C. Cir. 1982), cert. denied, 461 U.S. 938 (1983). see also Robert M. Frieden, The Computer
wireline, wireless and VoIP telephone affiliates and between information and telecommunications service providers, a vertically and horizontally integrated venture may be tempted to use packet discrimination in ways that constitute an unfair and deceptive trade practice.

XIX. Premium Services or Fees to Override Firewalls and Filters

In the rush to “monetize” Internet investments all kinds of ventures may come up with services that appear clever and promising before their debut. One of the major ISPs, unaffiliated with an incumbent carrier, came up with such an idea: imposing a per email message surcharge in exchange for which the ISP would use best efforts to deliver the message regardless of whether the ISP’s customer sought to block and filter out such content. Better-than-

96. AOL’s false start probably will not prevent ISPs from seeking surcharge payments from delivery of customer approved content. See Saul Hansell, Postage Is Due for Companies Sending E-Mail, (Feb. 5, 2006), available at http://www.nytimes.com/2006/02/05/technology/05AOL.html?ex=1296795600&en=6efa03d0cface9e&ei=5088&partner=rssnyt&emc=rss.
best-efforts delivery of spam constitutes a kind of paid-for-bit favoritism that enriches the ISP much to the dismay and chagrin of the ISP’s customer if it results in the delivery of spam and other unwanted content that otherwise would be filtered out of view. Such premium delivery option should occur only when an ISP has secured the consent of addresses to receive such content and the content provider agrees to pay the surcharge.

In this instance AOL came to the quick realization that whatever revenues it would generate with an email stamp or surcharge would pale in comparison to the ill will of its customers and the potential that they would vote with their feet and find an ISP more willing to respect consumer firewall and filtering preferences. The incumbent carriers readily tout consumer sovereignty as sufficiently forceful to prevent anticompetitive and unfair trade practices. But unlike AOL, which faces significant competition in the marketplace for providing consumers access to Internet content, facilities-based competition for first and last mile broadband network access lacks such competition. Until such time as most consumers have viable and low cost alternatives to a cable/telephone company duopoly consumers cannot readily shift carriers when experiencing packet discrimination or favoritism that they do not like.

XX. Unilaterally Imposing Upstream and Downstream Rules That Violate Existing Service Level Agreements

When AT&T Chairman Ed Whitacre singled out Google as a free rider, he suggested that his company and others should have the option to extend rules and pricing discipline over the customers of other carriers. No privity of contract exists between AT&T and Google unless both carrier and customer have executed a service agreement. Mr. Whitacre’s comment appears to state the case for his company to impose rules and charge fees for customers whose traffic traverses AT&T as part of the complete end-to-end routing arrangement, even though the AT&T role occurs as a result of peering and transiting contracts with other ISPs, not Google. In other words, existing peering and transit agreements made by AT&T entitle Google to have its traffic delivered to an AT&T subscriber, or to have one or more links provided by AT&T without any direct payment from Google to AT&T.

If this comes across as unfair, consider the following justifications. First AT&T readily agreed to this arrangement, because for every peering agreement where AT&T has to provide packet transport and delivery using its network it receives reciprocal
access to the networks of a peer. Second AT&T heretofore has offered subscribers unmetered AYCE service without regard to the type of bits the customer seeks and who generated the bits in the first place. If AT&T were to single out Google for inferior treatment, it would violate its contractual commitment to its peers and transit customers who have paid for best efforts access to AT&T’s networks. Additionally, AT&T might violate its Service Level Agreement with customers should Google bits experience extraordinarily great loses, delays, and access difficulties. Lastly, AT&T has agreed to support global access and seamless network connectivity presumably because it accrues equal or greater utility, value, and benefit for itself and its customers versus that accrued by other ISPs and their customers.

AT&T can impose special rules on Google if and only if all intermediary carriers similarly agree to enforce these rules and to offer any superior network performance offered by AT&T. Practically speaking AT&T may not be able to impose rules unilaterally across networks operated by others. However, if it were to attempt to do so regulation may be necessary to limit such rule setting to instances where AT&T can engineer a complete end-to-end routing using its own facilities, or the facilities of other carriers that readily agree to sniff Google packets and offer superior service for a premium rate. AT&T and all other ISPs should not have the option of seeking to engineer a deliberately inferior end-to-end routing experience for Google as a way to punish, or competitively disadvantage a single network user.

XXI. Conclusions and Recommendations

In light of the enormous stakes involved, the debate about net neutrality has triggered emotional responses from both sides. In response to relaxed regulation and the lost revenues from core wireline telephony, incumbent carriers have embraced the Internet as the primary focal point for services and profits going forward. These carriers have offered Internet access to end users at quite attractive, possibly subsidized rates. Having made the infrastructure investment and having acquired substantial market share for the first and last mile of Internet access, incumbent carriers predictably want to generate more revenues by offering subscribers additional Internet-mediated services. In light of a maturing Internet access marketplace, these carriers also want to eliminate any early market development or promotional pricing.

In seeking to migrate customers to traditional metered arrangements incumbent carriers seek to calibrate more closely
wholesale and retail charges with cost causation. But in doing so incumbent carriers may reduce consumers’ perceptions of the value in an Internet access subscription, particularly if no AYCE option remains. Incumbent carriers continue to offer AYCE for basic telephony because consumers expect this option and because unmetered service makes economic sense when the incremental cost of an additional call triggers insignificant additional costs outside of peak periods of congestion. Few telephone subscribers, even low volume and poor subscribers, willingly substitute a metered option for AYCE, despite the potential for a lower monthly bill.

Incumbent carriers also have failed to make a credible argument that large content providers have become free riders. Content providers, such as Google, pay for direct access to the Internet via geographically dispersed web hosting and traffic interchange points. It appears that incumbent carriers have picked the wrong fight with the wrong type of Internet user. If the Internet offers ample routing diversity and carrier options, vilified content providers, such as Google, can vote with their dollars and secure paid peering and transit agreements with competitors of incumbent carriers.

One would think incumbent carriers would want to load their facilities and recoup sizeable investment with Google’s traffic. This view extends to last mile terminations of Google traffic because some significant part of a consumer’s decision to pay for incumbent carrier provided broadband access is based on the expectation of having high speed access to content supplied by major Internet players such as Google, eBay, and Yahoo as well as for peer-to-peer networking opportunities and access to large file downloads.

On the other hand, net neutrality advocates may have overstated the potential for the demise of the Internet as we know it. Absent port blocking and other deliberate attempts to drop packets or degrade traffic, much of the prospective net bias constitutes reasonable, but probably ill-advised price discrimination. End-to-end connectivity does not appear at risk if incumbent carriers limit their net bias initiatives to changing the financial terms and conditions of service to end users and upstream ISPs. Incumbent operators may have erected higher market entry costs for content suppliers and for new innovators and entrepreneurs, but the potential for serendipity available to “web surfers” should remain largely unabated. However, should a meter replace AYCE, many cost conscious consumers may balk at allowing their computers and network connection to support
peer-to-peer networking, and collaborative computing ventures such as the search for extraterrestrial life and climate prediction projects.

The possibility exists for disruption of the current quid-pro-quo where consumers acquire access to valuable content, free of charge, in exchange for receiving additional unsolicited advertising. In a metered environment, or one where consumers face bandwidth or aggregate throughput caps or quotas, the additional advertising payload may carve out a substantial portion of a subscriber’s monthly throughput allotment. Consumers may have far less tolerance for unsolicited, spam emails, banner advertisements, and other third party users of the throughput if consumers directly bear the cost for the delivery of such traffic. Net bias initiatives may accrue revenue and efficiency gains for incumbent carriers at the risk of triggering a significant reduction in the synergy, welfare enhancement, or surplus accrued from an Internet access subscription.

Perhaps consumer resistance to unsolicited content may cause incumbent carriers to come up with innovative, untraditional payment plans similar to what Netheads offer. One option, used by both Netheads and quasi-Bellhead cellular radiotelephone carriers shift costs from content recipients to content generators. A “pay to play,” Calling Party Pays⁹⁸ arrangement would require advertisers to pay for content delivery in addition to content hosting just as calling parties pay for termination of calls on wireless mobile telephone networks in many countries with the exception of the United States. Because paying parties may consider any surcharge as a double payment, from both the end user and the advertiser, incumbent carriers must offer both parties some service enhancements. For end users an increase in the throughput quota or bit rate, and for advertisers and content creators superior carriage from end-to-end, i.e., from content generator, through all affiliated and unaffiliated ISP

⁹⁷. SETI@home is a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (“SETI”). Individual computer owners can participate by running a free program that downloads and analyzes radio telescope data thereby distributing the massive data analysis load among an extensive grid of participants. See SETI@home available at http://setiathome.ssl.berkeley.edu/.

⁹⁸. “Today in the United States, the presubscribed customer of a CMRS [commercial mobile radio services] provider – ‘the called party’ – generally pays all charges associated with incoming calls. Under CPP, a CMRS provider makes available to its subscribers an offering whereby the party placing the call to a CMRS subscriber pays at least some of the charges associated with terminating the call, including most prominently charges for the CMRS airtime.” Calling Party Pays Service Offering in the Commercial Mobile Radio Services, Declaratory Ruling and Notice of Proposed Rulemaking, WT Docket No. 97-207, 14 FCC Rcd. 10, 861 (1999) (proposing to remove regulatory obstacles to the offering to consumers of Calling Party Pays).
networks and onward to the last mile operated by the incumbent carrier.

If privatization signaled the conclusion of the Internet’s first, developmental phase, then the net neutrality/net bias debate signals the conclusion of the Internet’s second, adolescent and experimental phase. As the Bellheads have consolidated both ownership and management of the major Tier-1 ISPs, it logically follows that their management style and operating assumptions similarly will predominate.